Synthesis of Substituted *P***-Stereogenic Vinylphosphine Oxides by Olefin Cross-Metathesis**

Oleg M. Demchuk,† K. Michał Pietrusiewicz,*,†,‡ Anna Michrowska,† and Karol Grela*,†

*Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Department of Organic Chemistry, Maria Curie-Skłodowska Uni*V*ersity, Gliniana 33, 20-614 Lublin, Poland*

grela@icho.edu.pl; michal@hermes.umcs.lublin.pl

Received June 5, 2003

ORGANIC LETTERS 2003

Vol. 5, No. 18 ³²¹⁷-**³²²⁰**

ABSTRACT

Substituted vinylphosphine oxides have been prepared in good yield and exclusive (*E***)-olefin selectivity via olefin cross-metathesis using Grubbs and Hoveyda-type ruthenium catalysts. In addition, metathesis of chiral vinylphosphine oxides proceeds without racemization of the phosphorus chirality center, providing easy access to functionalized chiral nonracemic (***E***)-alkenylphosphine oxides.**

Achiral and chiral vinyl phosphine oxides have found wide use as versatile synthetic intermediates in the preparation of various mono- and diphosphorus systems.¹ Development of an easy access to their terminally substituted and functionalized homologues would greatly expand their synthetic utility.

Some examples have recently appeared in the literature which have shown that metathesis² can be used to access some phosphor-substituted olefins. Methods for the synthesis of vinylphosphonates via an olefin metathesis reaction have been recently published by Grubbs, Hanson, and Hayes.³ Allylphosphonates and allylphosphoramides have been cyclized in ring-closing metathesis reaction (RCM) by Hanson et al.4 Gouverneur and co-workers have demonstrated the intramolecular RCM of allylic phosphine oxides, phosphinates, and phosphine-boranes.⁵ However, to the best of our knowledge, intermolecular cross-metathesis (CM) reactions of vinylphosphine oxides have not been previously reported.

In this communication, we report the single-step synthesis of β -functionalized α , β -unsaturated phosphine oxides catalyzed by the ruthenium metathesis catalysts.

Although the second-generation ruthenium complex **1a** possesses in general a very good application profile, 2 the phosphine-free catalyst **1b**, recently introduced by Hoveyda et al.,⁶ displays even higher reactivity toward some electrondeficient substrates such as acrylonitrile,⁷ fluorinated olefins, 8 and vinyl sulfones.⁹ Excellent air stability, ease of storage and handling, and the possibility of catalyst reuse are

[†] Polish Academy of Sciences.

[‡] Maria Curie-Skłodowska University.

^{(1) (}a) Sasse, K. *Houben Weyl Methoden der Organischen Chemie*; Thieme Verlag: Stuttgart, 1963; Vol. 12/1. (b) Pietrusiewicz, K. M.; Zabłocka, M. *Chem. Re*V. **¹⁹⁹⁴**, *⁹⁴*, 1375. (c) Pietrusiewicz, K. M.; Zabłocka, M.; Wiśniewski, W. Phosphorus, Sulfur, Silicon 1990, 49/50, 263.

⁽²⁾ Pertinent review: (a) Trnka, T. M.; Grubbs, R. H. *Acc. Chem. Res.* **2001**, *34*, 18. (b) Fu¨rstner, A. *Angew. Chem., Int. Ed.* **2000**, *39*, 3012. (c) Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413. (d) Schuster, M.; Blechert, S. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 2037.

^{(3) (}a) Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. *Synlett* **2001**, 1034. (b) For an olefin CM approach to vinylphosphonate-linked nucleic acids, cf.: Lera, M.; Hayes, C. J. *Org. Lett.* **2001**, *3*, 2765. (c) For a RCM reaction of *P*-chiral vinyl- and allylphosphonamides and phosphonates, see: Stoianova, D. S.; Hanson, P. R. *Org. Lett.* **2000**, *2*, 1769.

^{(4) (}a) Hanson, P. R.; Stoianova, D. S. *Tetrahedron Lett.* **1998**, *39*, 3939. (b) Hanson, P. R.; Stoianova, D. S. *Tetrahedron Lett.* **1999**, *40*, 3297. (c) Sprott, K. T.; Hanson, P. R. *J. Org. Chem.* **2000**, *65*, 7913.

^{(5) (}a) Bujard, M.; Gouverneur, V.; Mioskowski, C. *J. Org. Chem.* **1999**, *64*, 2119. (b) Trevitt, M.; Gouverneur, V. *Tetrahedron Lett.* **1999**, *40*, 7333. (c) Hetherington, L.; Greedy, B.; Gouverneur, V. *Tetrahedron* **2000**, *56*, 2053. (d) Schuman, M.; Trevitt, M.; Redd, A.; Gouverneur, V. *Angew. Chem., Int. Ed.* **2000**, *39*, 2491.

^{(6) (}a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1999**, *121*, 791. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2000**, *122*, 8168.

additional advantages of this system.⁶ In this investigation, we decided to utilize two Hoveyda-type ruthenium complexes (**1c**,**d**) recently developed in our laboratory.^{10,11} Catalyst **1d**, very stable and easy to prepare from inexpensive substrates, shows activity comparable to the parent Hoveyda carbene **1b**, ¹⁰ while the nitro-substituted catalyst **1c** possesses a dramatically enhanced reactivity, e.g., **1c** promotes metathesis even at 0° C.¹¹

Test reactions between olefin **2a** (1 equiv), diphenyl- (vinyl)phosphine oxide **3a** (2 equiv), and complexes **1a** and **1c**,**d** (0.05 equiv) were performed under argon, at reflux temperature in dichloromethane (Procedure A). All the "second-generation" ruthenium complexes effect the formation of corresponding product **4a** in similarly good yields (78-82%) and exclusively as the (*E*)-isomer (Scheme 2).

^a Isolated yields of analytically pure products.

These results indicate that, in this particular case, the Hoveyda-type carbenes are not superior to the Grubbs catalyst **1a**.

Having identified ruthenium complexes **1a**, **1c**, and **1d** as effective catalysts for this transformation, we decided to

(9) (a) For a CM reaction of phenyl vinyl sulfone catalyzed by **1a**, see: Grela, K.; Bieniek, M. *Tetrahedron Lett.* **2001**, *42*, 6425. (b) For screening of the catalytic performance of Ru- and Mo-based catalysts in this transformation, see: Grela, K.; Michrowska, A.; Bieniek, M.; Kim, M.; Klajn, R. *Tetrahedron* **²⁰⁰³**, *⁵⁹*, 4525-4531.

(10) Grela, K.; Kim, M. *Eur. J. Org. Chem.* **2003**, 963.

(11) (a) Grela, K.; Harutyunyan, S.; Michrowska, A. *Angew. Chem., Int. Ed.* **2002**, *41*, 4038. (b) For applications of **1c**, see ref 9b and: Ostrowski, S.; Mikus, A. *Mol. Divers.* Accepted for publication.

extend our investigation to a more diverse set of olefinic substrates. The results compiled in Tables 1 and 2 illustrate

Table 1. Substituted Vinylphosphine Oxides **4** by Cross-Metathesis of Diphenyl(vinyl)phosphine Oxide **3a**

entry	alkene 2	product 4	procedure / cat yield (%) ^a
a	TBSO	TBSO	P(O)Ph ₂ A / 1c / 82
	2a	4a	
b AcO	OAc	P(O)Ph ₂ AcO	B/1c/52 ^b
	2 _b	4b	
c	CI с	P(O)Ph ₂ СI	B/1d/65
	2c	4c	
d	Br- 7Δ	P(O)Ph ₂ Br٠	B/1d/99
	2d	4d	
e			P(O)Ph ₂
	CH ₃	CH ₃	A/1c/76
O_2N	2е	O_2N н 4e	

^a Isolated yields of analytically pure products. Procedure A: **2** (1 equiv), **3a** (2 equiv). Procedure B: **2** (2.5 equiv), **3a** (1 equiv). Reaction conditions: catalyst **1a**-**^d** (5 mol %), dichloromethane, reflux, 16 h. *^b* Yield based on NMR.

the scope and synthetic utility of this reaction. Thus, the olefinic substrates bearing various functionalities, including chloro- and bromoalkenes, carbonyl compounds, and NHunprotected indole can be easily converted to the corresponding α , β -unsaturated phosphine oxides in good yields. In all reported cases, the (*E*)-isomer was the only phosphine oxide product detected by HPLC or NMR.

	\checkmark			
entry	alkene ₂	phosphine oxide 3^a	product 4	cat / yield (%) ^b
a	Br- 2d	$\frac{11}{p}$. Ph Me 3b	.Ph Br- Me 4h	1c/86
b	г 12	3b	O ∬.∘Ph Me' 4i	1d/85
¢	2i C_6F_{13} 2j	3 _b	n Ph Me C_6F_{13}	1c/ 0^c
d	$_{\rm H_3CO}$ 2k	3b	4j ဂူ ,.Ph H_3CO_2O Me 4k	1a/74
е	Ph	. Ph 'Bu ^t	R .Ph Ph \mathbf{B} u ^t	1d/72
	21	3c	41	

a Phosphine oxide **3b** (ref 17): $[\alpha]_D^{20} - 80.5$ (*c* 1, CH₂Cl₂), ee 98%, colute configuration S_p. Phosphine oxide **3c** (ref 18): $[\alpha]_D^{20} - 57.2$ (*c* 1, absolute configuration *S*_P. Phosphine oxide **3c** (ref 18): $[\alpha]_D^{\omega}$ –57.2 (*c* 1, CH₂Cl₂); ee 73%, absolute configuration *R*_P. *b* Isolated yields of analytically absolute configuration S_P. Phosphine oxide 3c (ref 18): $[\alpha]_D^{20}$ –57.2 (c 1, pure products. Reaction conditions: **²** (2.5 equiv), **³** (1 equiv), catalyst **1a**-**^d** (5 mol %), dichloromethane, reflux, 16 h. *^c* Homodimer **5** (85%) was isolated instead of the expected product **4j**.

⁽⁷⁾ Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S. *Synlett* **2001**, 430.

⁽⁸⁾ Imhof, S.; Randl, S.; Blechert, S. *Chem. Commun.* **2001**, 1692.

When the CM alkene partner **2** is inexpensive or easily available, it is reasonable to use it in excess, allowing the more economical utilization of vinylphosphine oxides **3a**-**^c** (Procedure B). The excess of alkenes **2b**,**c** or their "dimerization" products can be easily removed by evaporation under vacuum or by flash chromatography.

It has been reported by Grubbs that CM of terminal olefins and 2-methyl-2-butene (**2f**) constitutes a very elegant method of an *allyl* to *prenyl* conversion.¹² However, when an electron-deficient substrate (such as acrylate) is used, another reaction pathway has been observed, leading to the preferential formation of methyl-substituted olefin.¹² Similarly, in the reaction of vinylphosphine oxide **3a** and neat 2-methyl-2-butene (bp $35-38$ °C), we observed a highly chemo- and stereoselective formation of the (1*E*)-prop-1-enyl phosphine oxide **4f** (98% purity by NMR). It should be noted, however, that when the same reaction was performed in a 1:1 mixture of 2-methyl-2-butene: CH₂Cl₂, increased amounts of dimethyl-substituted product **4g** were formed (Scheme 3).

In connection with our ongoing research program aimed at the preparation of new chiral phosphine ligands, we next decided to test the CM of *P*-stereogenic¹³ vinylphosphine oxides **3b**,**c**. In recent years, resolved vinyl phosphine oxides have served as convenient precursors to *P*-stereogenic ligands¹⁴ as well as chiral reagents for effecting P to C chirality transfer in stoichiometric addition, cycloaddition, and substitution processes.¹⁵ The straightforward possibility

(14) (a) Johnson, C. R.; Imamoto, T. *J. Org. Chem.* **1987**, *52*, 2170. (b) Bianchini, C.; Cicchi, S.; Peruzzini, M.; Pietrusiewiez, K. M.; Brandi, A. *J. Chem. Soc., Chem. Commun.* **1995**, 833. (c) Nagel, U.; Roller, C. *Z. Naturforsch. B* **1998**, *53*, 221. (d) Pietrusiewicz, K. M.; Zabłocka, M. *Tetrahedron Lett.* **1988**, 29, 1991. (e) Maj, A. M.; Pietrusiewicz, K. M.; Suisse, I.; Abgossou, F.; Mortreux, A. *Tetrahearon: Asymmetry* **1999**, *10*, 831. (f) Maj, A. M.; Pietrusiewicz, K. M.; Suisse, I.; Abgossou, F.; Mortreux, A. *J. Organomet. Chem.* **2001**, *626*, 157.

(15) (a) Brandi, A.; Cannavo, P.; Pietrusiewicz, K. M.; Zabłocka, M.; Wieczorek, W.*J. Org. Chem.* **1989**, *54*, 3073. (b) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. *Tetrahedron Lett.* **1991**, *32*, 3265. (c) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. *Tetrahdedron: Asymmetry* **1991**, *2*, 1063. (d) Katagiri, N.; Yamamoto, M.; Iwaoka, T.; Kaneko, C. *J. Chem. Soc., Chem. Commun.* **1991**, 1429. (e) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M.; Zabłocka, M.; Wiśniewski, W. *J. Org. Chem.* **1991**, *56*, 4383. (f) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. *Phosphorus, Sulfur, Silicon* **1993**, *75*, 155. (g) Cardellicchio, C.; Fiandanese, V.; Naso, F.; Pacifico, S.; Koprowski, M. Pietrusiewicz, K. M. *Tetrahedron Lett.* **1994**, *35*, 6343.

of their metathetic conversions into functionalized terminally substituted analogues retaining the resolved *P*-stereogenic center, as well as the unsaturation functionality, would give a new impetus to the synthesis of novel elaborated *P*stereogenic systems of diversified structures. Access to enantiopure vinyl phosphine oxides possessing substituents at the double bond has been so far very limited.1b

As summarized in Table $2¹⁶$ various substituted chiral vinylphosphine oxides can be accessed by CM reaction of homochiral **3b** and **3c**. More electron-deficient alkene **2j** gave a somewhat unexpected result, as after column chromatography, an 85% yield of homodimer **5** was obtained instead of the expected cross-product **4j**. It should be noted that in previous reactions with **3a**-**^c** (Procedure B), we have not observed formation of their homodimers.19 The examples of homometathesis between two electron-deficient olefins are rare, and good yields have only been reported for homodimerization of acrylates²⁰ and for cross-metathesis of α , β -unsaturated substrates with styrenes.²¹ To check if the presence of the fluoroolefin **2j** was necessary for the formation of 5, we refluxed a CH_2Cl_2 solution of phosphine oxide **3b** in the presence of 5 mol % **1c**, and after the reaction, we isolated the product **5** in high yield and exclusively as the (*E*)-isomer (Scheme 4). This finding

provides a potentially useful method for preparing chiral bidentate phosphine ligands.

⁽¹²⁾ Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. *Org. Lett.* **2002**, *4*, 1939.

⁽¹³⁾ Frequently, the terms "P-chiral" and "P-chirogenic" have been used to differentiate chiral phosphorus-containing compounds that bear a stereogenic phosphorus atom from those that do not. These terms are, however, incorret, and their use should be discouraged. We thank Prof. Scott E. Denmark for bringing this issue to our attention.

⁽¹⁶⁾ **General Procedure for Cross-Metathesis of Vinylphosphine Oxides. Procedure B.** To a mixture of vinylphosphine oxide **3** (0.5 mmol) and 2 (1.25 mmol) in CH₂Cl₂ (4 mL) was added a solution of catalyst 1 $(0.025 \text{ mmol}, 5 \text{ mol} \%)$ in CH₂Cl₂ (1 mL). The resulting mixture was stirred at 45 °C for 16 h. The solvent was removed under reduced pressure. The crude product **⁴** was purified by flash chromatography (hexane-acetone 4:1, then hexane-ethyl acetate-methanol 5:2:0.5). **(***R***P)-(**-**)-***tert***-Butyl- (phenyl)[(1***E***)-3-phenylprop-1-enyl]phosphine oxide (4l):** pale gray crystals (72% of yield); $\left[\alpha\right]_0^{20}$ – 27.6 (*c* 1, CH₂Cl₂); mp 103–104 °C; IR (KBr, cm⁻¹) 2961 1943 1732 1668 1628 1603 1495 1476 1436 1364 1268 cm-1) 2961, 1943, 1732, 1668, 1628, 1603, 1495, 1476, 1436, 1364, 1268, 1213, 1213, 1171, 1110, 997, 816, 776, 748, 699; ³¹P NMR (CDCl₃, 202, MHz) $\delta = 38.8$; ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.72 - 7.16$ (m, 10 H, *Ph*), 7.07 (tt, *J* = 16.9, 6.3 Hz, 1 H, CH₂-C*H*), 6.23 (ddt, *J* = 26.9, 16.9, 1.7 Hz, 1 H, P(O)-C*H*), 3.63 (dt, $J = 6.3$, 1.9 Hz, 2 H, Ph-C*H*₂), 1.09 (d, $J = 14.9$ Hz, 9 H, C-(C*H*₃)3); ¹³C NMR (CDCl₃, 126 MHz) $\delta = 151.7$ (s, *J* = 14.9 Hz, 9 H, C-(CH₃)3); ¹³C NMR (CDCl₃, 126 MHz) δ = 151.7 (s, CH₂-CH) 137.8 (s, CH₂-C) 131.8 (d, J = 8 Hz, *o*-C in Ph-P(O)) 131.3 CH_2-CH), 137.8 (s, CH_2-C), 131.8 (d, $J = 8$ Hz, *o-C* in Ph-P(O)), 131.3
(d, $J = 2.6$ Hz, *p-C* in Ph-P(O)), 130.8 (d, $J = 92.8$ Hz, P(O)-C), 128.9 (d, $J = 2.6$ Hz, $p\text{-}C$ in Ph-P(O)), 130.8 (d, $J = 92.8$ Hz, P(O)-*C*), 128.9 (s, $q\text{-}C$ in Ph-CH₂), 128.6 (s, $m\text{-}C$ in PhCH₂), 128.1 (d, $J = 10.9$ Hz, $m\text{-}C$ $(s, o\text{-}C \text{ in } Ph\text{-}CH_2)$, 128.6 $(s, m\text{-}C \text{ in } PhCH_2)$, 128.1 $(d, J = 10.9 \text{ Hz}, m\text{-}C)$ in Ph-P(O)), 126.6 (s, *p-C* in Ph-CH₂), 119.1 (d, *J* = 91.5 Hz, CH-P(O)), 40.8 (d, *J* = 15.5 Hz, *C*H₂), 32.6 (d, *J* = 73.3 Hz, *C*(CH₃)₃), 24.2 P(O)), 40.8 (d, $J = 15.5$ Hz, CH_2), 32.6 (d, $J = 73.3$ Hz, $C(CH_3)_3$), 24.2
(s, $C(CH_3)_3$): MS (ESD m/z rel intensity) 299 (70) [M + H1⁺ 321 (100) (s, $C(CH_3)_3$); MS (ESI) m/z rel intensity) 299 (70) $[M + H]^+$, 321 (100)
 $[M + Na]^{+}$: HR-MS (C₁₀H₂₂OPNa): calcd 321 1379 found 321 1391 $[M + Na]$ ⁺; HR-MS (C₁₉H₂₃OPNa): calcd 321.1379, found 321.1391.

⁽¹⁷⁾ Pietrusiewicz, K. M.; Zabłocka, M.; Monkiewicz, J. *J. Org. Chem.* **1984**, *49*, 152.

⁽¹⁸⁾ Pietrusiewicz, K. M. *Phosphorus, Sulfur, Silicon* **1996**, *109*, 573. The optically pure oxide **3c** has been available, but for the sake of a more reliable comparison of enantiomeric purities of the substrate and the product by means of 1NMR using chiral shift reagents, which in these cases gave only moderate line separations (ca. $4-5$ Hz, refs 22 and 23), the enantiomeric purity of the starting **3b** was deliberately lowered to 73% by admixing of *rac*-**3b**.

To prove that the metathesis of *P*-stereogenic vinylphosphine oxides proceeds without racemization at the phosphorus chirality center, we subjected the resultant vinylphosphine oxides to ³¹P and ¹H NMR experiments with Kagan's shift reagent.22 Careful inspection of the NMR spectra revealed that no racemization takes place and that the ee values of substrates **3b**,**c** and of products **4h**,**l** are virtually identical.23

(19) In homodimerization reaction of **3b**, we have also isolated a theoretical yield (≈5%) of the phosphine oxide **6**, a product of CM between **3b** and catalyst **1c**.

(20) Choi, T.-L.; Lee, C. W.; Chatterjee, A. K.; Grubbs, R. H. *J. Am. Chem. Soc.* **2001**, *123*, 10417.

(21) Chatterjee, A. K.; Toste, F. D.; Choi, T.-L.; Grubbs, R. H. *Ad*V*. Synth. Catal.* **2002**, *344*, 634.

(22) (a) Pakulski, Z.; Demchuk, O. M.; Kwiatosz, R.; Osiński, P. W.; Świerczyńska, W.; Pietrusiewicz, K. M. *Tetrahedron: Asymmetry* 2003, *14*, 1459. (b) Deshmukh, M.; Dunach, E.; Juge, S.; Kagan, H. B. *Tetrahedron Lett.* **1984**, *25*, 3467.

(23) Optical purities were calculated from the corresponding 31P and 1H NMR spectra registered in the presence of (*S*)-*N*-[1-(1-naphthyl)ethyl]-3,5-
dinitrobenzamide (cf. Supporting Information). E.g., **4l**: ³¹P NMR (CDCl₃, 202 MHz): δ (rel weight) = 39.30 (1.00), 39.25 (0.15); significant fragments of the ¹H NMR spectrum (CDCl₃, 500 MHz): δ (rel weight) = 6.29 (0.15), 6.27 (1.00); 6.26 (0.16), 6.24 (1.00); 6.20 (0.17), 6.19 (1.00); 1.10 (0.14), 1.08 (1.00); 1.07 (0.16), 1.05 (1.00). Calculated optical purity: $72 \pm 4\%$ ee.

Similarly, in the case of homodimerization of **3b**, careful NMR inspection of the reaction mixture revealed that only one diastereoisomer of **5** was formed in this transformation.

In conclusion, we have shown that the substituted vinylphosphine oxides can be prepared in good yield and exclusive (*E*)-olefin selectivity via olefin cross-metathesis using Grubbs and Hoveyda-type ruthenium catalysts. The metathesis of *P*-stereogenic vinylphosphine oxides proceeds without racemization of a chiral phosphorus center, providing easy access to functionalized chiral nonracemic (*E*)-alkenylphosphine and bis(phosphine) oxides. These findings further expand the range of olefins that participate in CM reaction. Experiments to broaden the scope of this reaction for the preparation of phosphine ligands are under way.

Acknowledgment. The authors wish to thank Prof. Holger Butenschön, Universität Hannover, for helpful suggestions and Dr. Bohdan Kamieński for his assistance in NMR data collection. This work was supported by the State Committee of Scientific Research (Grant No. 4T09A13622).

Supporting Information Available: Experimental procedures and characterization data for all products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035011M